

Designing Screens With FIDEL
Version 4 Release 3.1

DN4500367.0700

Designing Screens With FIDEL

Designing Screens With FIDEL
1 Designing Screens With FIDEL ..1-1

Getting Started Using FIDEL With Modify ...1-2
Describing the CRT Screen ..1-4

Specifying Elements of the CRTFORM..1-4
Defining a Field...1-5
Using Spot Markers for Text and Field Positioning..1-6
Specifying Lowercase Entry: UPPER/LOWER..1-8
Data Entry, Display, and Turnaround Fields ...1-9
Controlling the Use of PF Keys...1-13
Resetting PF Key Controls ..1-14
Setting PF Key Fields for Branching Purposes ...1-14
Using Labeled Fields...1-16
Specifying Cursor Position..1-17
Determining Current Cursor Position for Branching Purposes ...1-18

Using FIDEL in MODIFY ...1-21
Conditional and Non-Conditional Fields...1-21
Using FIXFORM and FIDEL in a Single MODIFY ...1-26
Default CRTFORM Processing Within the Same MODIFY Request...1-28
Generating Automatic CRTFORMs..1-30
Using Multiple CRTFORMs: LINE..1-34
CRTFORMs and Case Logic ..1-41
Specifying Groups of Fields..1-43
Using REPEAT to Display Multiple Records ...1-45
Using Groups of Fields With Case Logic..1-49

Handling Errors ..1-53
Handling Format Errors...1-53
VALIDATE and CRTFORM Display Logic ..1-54
Handling Errors With Repeating Groups ..1-55
Rejecting NOMATCH or Duplicate Data ...1-57
Logging Transactions ..1-58
Additional Screen Control Options ...1-58
Clearing the Screen: CLEAR/NOCLEAR ..1-59

Index ... I-1

Cactus, EDA, FIDEL, FOCCALC, FOCUS, FOCUS Fusion, Information Builders, the Information Builders logo, SmartMode, SNAPpack,
TableTalk, and Web390 are registered trademarks and Parlay, SiteAnalyzer, SmartMart, and WebFOCUS are trademarks of Information
Builders, Inc.
Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.
NOMAD is a registered trademark of Aonix.
UniVerse is a registered trademark of Ardent Software, Inc.
IRMA is a trademark of Attachmate Corporation.
Baan is a registered trademark of Baan Company N.V.
SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.
Impromptu is a registered trademark of Cognos.
Alpha, DEC, DECnet, NonStop, and VAX are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.
CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International, Inc.
MODEL 204 and M204 are registered trademarks of Computer Corporation of America.
Paradox is a registered trademark of Corel Corporation.
StorHouse is a registered trademark of FileTek, Inc.
HP MPE/iX is a registered trademark of Hewlett Packard Corporation.
Informix is a registered trademark of Informix Software, Inc.
Intel is a registered trademark of Intel Corporation.
ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS, OS/2, OS/400,
RACF, RS/6000, S/390, VM/ESA, and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS/ESA, QMF, SQL/DS, VM/XA
and WebSphere are trademarks of International Business Machines Corporation.
INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.
Orbix is a registered trademark of Iona Technologies Inc.
Approach and DataLens are registered trademarks of Lotus Development Corporation.
ObjectView is a trademark of Matesys Corporation.
ActiveX, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, FrontPage, Windows, and Windows NT are registered
trademarks of Microsoft Corporation.
Teradata is a registered trademark of NCR International, Inc.
Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.
NetWare and Novell are registered trademarks of Novell, Inc.
CORBA is a trademark of Object Management Group, Inc.
Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.
PeopleSoft is a registered trademark of PeopleSoft, Inc.
INFOAccess is a trademark of Pioneer Systems, Inc.
Progress is a registered trademark of Progress Software Corporation.
Red Brick Warehouse is a trademark of Red Brick Systems.
R/3 and SAP are registered trademarks of SAP AG.
Silverstream is a trademark of Silverstream Software.
ADABAS is a registered trademark of Software A.G.
CONNECT:Direct is a trademark of Sterling Commerce.
Java, JavaScript, NetDynamics, Solaris, and SunOS are trademarks of Sun Microsystems, Inc.
PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.
UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.
Three D Graphics is a trademark and Perspective is a registered trademark of Three D Graphics, Inc. Portions of WebFOCUS Desktop Graph
Editor documentation are adapted from Perspective for Java documentation.
Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not all
cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher’s intent to
use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these
names other than to refer to the product described.
Copyright © 2000, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.
Printed in the U.S.A.

Designing Screens With FIDEL 1-1

CHAPTER 1

Designing Screens With FIDEL

Topics:

• Getting Started Using FIDEL With
Modify

• Describing the CRT Screen

• Using FIDEL in MODIFY

• Handling Errors

The FOCUS Interactive Data Entry Language, FIDEL, enables
you to design full-screen forms for data entry and application
development. FIDEL is used with MODIFY to build data
maintenance and inquiry screens.

Note:

• Dialogue Manager (-CRTFORM) is not supported in this
release. Additionally, MODIFY CRTFORM only displays
output in HTML format (Desktop Viewer) and therefore it
does not support field attributes such as color and
highlighting.

• The screens in this chapter show the text output only. The
appearance of the screens will be different in HTML format
(Desktop Viewer).

Designing Screens With FIDEL

1-2 Information Builders

Getting Started Using FIDEL With Modify
When you use FIDEL with MODIFY, you are setting up full-screen forms for the
maintenance of data source fields. Most MODIFY features such as conditional and
non-conditional fields, automatic application generation, Case Logic, multiple record
processing, error handling, validation tests, logging transactions, and typing messages to
the terminal work with FIDEL.

With MODIFY you also have access to additional screen control options such as clearing
the screen, specifying and changing the size of the screen, and designating the particular
line on which the form starts.

Using FIDEL With MODIFY
The following example of a simple MODIFY CRTFORM illustrates the use of FIDEL:

MODIFY FILE EMPLOYEE
1. CRTFORM
2. "EMPLOYEE UPDATE"
3. "EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"
4. "DEPARTMENT: <DEPARTMENT SALARY: <CURR_SAL"

5. MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL

6. DATA VIA FIDEL
END

This request sets up a form to update the last name, department, and current salary. The
procedure processes as follows:

1. CRTFORM generates the visual form and invokes FIDEL. The form begins on line
one of the screen unless specified otherwise with the LINE option. See Using
Multiple CRTFORMs: LINE on page 1-34 for details on the LINE option.

2. Each line on the screen begins and ends with double quotation marks. This is a line
of text that serves as a title. Note the close correspondence to the syntax used to
create headings in a TABLE request.

3. The second screen line specifies two data fields: EMP_ID and LAST_NAME. A data
entry field is indicated by a left caret, followed by the field name or alias from the
Master File. The text, EMPLOYEE ID #: and LAST NAME: identifies each field on
the screen. This informs the operator where to enter the data.

Example

 Getting Started Using FIDEL With Modify

Designing Screens With FIDEL 1-3

4. This is the last line within double quotation marks. It signals the end of the
CRTFORM. In this case it identifies and defines two more data fields:
DEPARTMENT and CURR_SAL. When you execute the MODIFY request, the
form instantly displays on the screen:

EMPLOYEE UPDATE
EMPLOYEE ID #: LAST NAME:
DEPARTMENT: SALARY:

The number of characters allotted for each data entry field on the screen defaults to
the display format for that particular field in the Master File. You can optionally
specify a format for screen display that is shorter than the default.

 The operator can now fill in the data entry areas with the appropriate information.

5. The request continues with MODIFY MATCH logic.

6. The last line tells FOCUS where the incoming data is from. In WebFOCUS Desktop,
you must use DATA VIA FIDEL to indicate the incoming data is from the Desktop
Viewer.

Usage Notes for Using FIDEL Screens: Operating Conventions
The following procedures apply for filling in all FIDEL screens:

• To move from field to field, press the Tab key. You can also move the cursor around
the screen using the arrow keys.

• When filling in values on the screen, you may use any of the keys on the keyboard.

• To scroll forward or backward through a long CRTFORM (from screen to screen),
use the scroll bar. Note that in previous versions, scrolling was performed by
pressing the PF8 or PF7 key.

• To transmit the screen, press the Enter key.

• If you make an error, the transaction may not be transmitted and an error message
may display at the bottom of the screen. You can correct the error and retransmit the
screen.

• To signal the end of data entry, press the PF3 key or type END in an unprotected
area. In MODIFY, this terminates the request.

• To return to the first screen without transmitting the current screen, press the PF2 key
or the key set to QUIT.

• The Reset key clears all entries.
Note: The PF key settings referred to here are the default settings. Any PF key can be
redefined using the SET statement.

Reference

Designing Screens With FIDEL

1-4 Information Builders

Describing the CRT Screen
The MODIFY statement CRTFORM followed by the screen layout, generates a form.
Within one MODIFY procedure you can use an unlimited number of screen lines (within
memory constraints). Each screen line can contain a maximum of 78 characters of text
and data.

In MODIFY, you can use up to 255 CRTFORM statements in a procedure and a
maximum of 248 lines are permitted for each CRTFORM.

Specifying Elements of the CRTFORM
To create the visual form, you enter the screen lines one after the other within double
quotation marks. For each screen line, you can specify various screen elements such as
descriptive text and fields. A left caret (<) followed by the name of the field generates the
position where data is to be entered onto the screen.

You may need to use two FOCEXEC lines to describe one physical CRTFORM line.
Simply omit the double quotation marks (“) at the end of the first line and omit them at
the beginning of the next line as well. Everything between the set of double quotation
marks will read as one screen line on the CRTFORM.

How to Invoke FIDEL Using CRTFORM
The following is a summary of the complete syntax for generating a CRTFORM in
MODIFY. The individual options and screen elements are described in detail in specific
sections later in the chapter.

CRTFORM [option option...]
"screen element [screen element...]"

where:

CRTFORM

Automatically invokes FIDEL and sets up the visual form. Subsequent lines describe
the screen.

option option...

Refers to screen control options.

"screen element..."

Can be user-defined text, fields, or spot markers. Spot markers define the next place
on the screen where a screen element will display. Both spot markers and fields are
preceded by a left caret and optionally closed by a right caret.

Syntax

 Describing the CRT Screen

Designing Screens With FIDEL 1-5

Note:

• You can use the asterisk (*) with CRTFORM in FIDEL to generate a CRTFORM
containing all of the data source’s fields automatically (that is, without specifying
individual fields). See Generating Automatic CRTFORMs on page 1-30 for
information on CRTFORM *, its syntax, and variations.

• Do not begin any field used in a CRTFORM or FIXFORM statement with Xn, where
n is any numeric value. This applies to fields in the Master File and computed fields.

Defining a Field
Labels, prefixes, attributes, and formats are parts of the definition of a particular field.

Note: Fields with a text (TX) format cannot be used in CRTFORM. However, they can be
entered interactively using TED.

How to Define a Field
<[:label.][prefix.][attribute.]field[/length][>]

where:

label

Is a user-defined label of up to 12 characters associated with a field. It may not
contain embedded blanks. For more information on user-defined labels, see Using
Labeled Fields on page 1-16.

prefix

Designate a display or turnaround field (D. or T.), respectively. See Data Entry,
Display, and Turnaround Fields on page 1-9 for more information.

attribute

Is the abbreviation or full name of a screen attribute.

field

Is the name of the field or variable being defined.

length

Is the length of the field as it appears on the screen. In MODIFY, you need to define
a length, only if you want the screen length to be different from the format length that
is defined in the Master File or COMPUTE command.

Note: When you use the abbreviations for attributes, you do not need to use the dot
separator between attributes or between a prefix and an attribute.See Data Entry, Display,
and Turnaround Fields on page 1-9 for more information on prefixes and Using Labeled
Fields on page 1-16 for more information on labels.

Syntax

Designing Screens With FIDEL

1-6 Information Builders

Using Spot Markers for Text and Field Positioning
Because the lengths of fields vary, text does not automatically align uniformly on the
screen. Spot markers are available to help you position both text and fields. A spot marker
is essential to eliminate trailing blanks at the end of the first line, if your screen line
description takes up two FOCEXEC lines.

How to Use Spot Markers to Position Text and Fields

Marker Example Usage

<n or <n> <50 Positions the next character in column 50.

<+n or <+n> <+4 Positions the next character four columns from the last
non-blank character.

<-n or <-n> <-1 Positions the next character one column to the left of the
last character. This marker’s function is to suppress or
write over the attribute byte at the beginning and the end
of a field.

</n or </n> </2 Positions the next character at the beginning of the line,
that is two lines from the last (skips two lines). Note:
The last line is blank and is created when a double
quotation mark (“) is encountered.

<0X or <0X> <0X Positions the next character immediately to the right of
the last character (skip zero columns). This is used to
help position data on a FIDEL screen when a single
screen line is coded as two lines in a FOCEXEC. No
spaces are inserted between the spot marker and the start
of a continuation line.

Note: You can optionally use the right caret >. This is useful when the next character in
the line is a left caret. It also enhances readability.

Reference

 Describing the CRT Screen

Designing Screens With FIDEL 1-7

Using Spot Markers for Positioning
Suppose you want the various input data fields arranged across the screen in vertical
sections, left justified, and in horizontal segments marked off with lines. In the following
example, spot markers are used to create the desired screen.

MODIFY FILE EMPLOYEE
CRTFORM

"EMPLOYEE UPDATE"
1. "</1"

"---"
"EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST_NAME"

2. "</1"
3. "DEPARTMENT: <DEPARTMENT <+3 CURRENT SALARY:<0X>

<CURR_SAL"
"---"
"BANK: <BANK_NAME"
"---"

MATCH EMP_ID
.
.
.

DATA VIA FIDEL
END

The spot markers in the example perform the following functions:

1/2. </1 skips one blank line.

3. <+3 moves the word CURRENT three spaces to the right of the last letter in the word
DEPARTMENT. <0X> skips no spaces. No extra spaces are inserted between this
and the next word (<CURR_SAL) on the continuation line. There is, in fact, one
space before the field which is an attribute byte that marks the start of a field.

The screen displays as follows:

EMPLOYEE UPDATE

--
EMPLOYEE ID #:LAST NAME:

DEPARTMENT: CURRENT SALARY:
--
BANK:
--

Example

Designing Screens With FIDEL

1-8 Information Builders

Specifying Lowercase Entry: UPPER/LOWER
All entered text is normally translated to uppercase letters. You can override this default
and preserve both uppercase and lowercase text by using the lowercase option.

How to Use the Lowercase Option
[-]CRTFORM [UPPER|LOWER]

where:

UPPER

Translates all characters to uppercase. This is the default.

LOWER

Reads lowercase data from the screen. Once you specify LOWER, every screen
thereafter is a lowercase screen until you specify UPPER.

Note: In MODIFY, when you use multiple CRTFORMs on the same screen (using LINE
n), you can mix UPPER and LOWER among the forms.

Using the Lowercase Option

The following example shows the syntax of a simple MODIFY CRTFORM using the
lowercase option, followed by two screen lines containing various screen elements: text, a
spot marker, and a field.

1. CRTFORM LOWER
2. "PLEASE FILL IN THE EMPLOYEE ID # </1"
3. "EMPLOYEE ID #: <EMP_ID"

MATCH EMP_ID
.
.
.

The procedure processes as follows:

1. CRTFORM invokes FIDEL and generates the form. The LOWER case option
specifies that what is entered from the terminal in lowercase will remain in lowercase.

2. The first line of the screen contains descriptive text.

</1 is a spot marker which skips one blank line.

Example

Syntax

 Describing the CRT Screen

Designing Screens With FIDEL 1-9

3. The last line of the screen contains two screen elements: descriptive text that
identifies the field and the data source field EMP_ID. The last line between quotation
marks signals the end of the CRTFORM.

The form generated displays as follows:

PLEASE FILL IN THE EMPLOYEE ID #

EMPLOYEE ID #:

Data Entry, Display, and Turnaround Fields
There are three types of data or variable fields that can be specified on the CRTFORM:
data entry, display, and turnaround.

You can also compute data fields and specify them as entry, display, or turnaround on the
CRTFORM. You can convert a turnaround field to a display field dynamically.

In MODIFY, fields can also be designated as conditional or unconditional. We
recommend that for data entry, you use conditional fields (left caret only) so that the
values in your data source are not replaced by a blank or a zero if you do not enter data
for the field. See Conditional and Non-Conditional Fields on page 1-21 for a complete
explanation of the use of conditional and non-conditional fields in MODIFY.

For most turnaround fields, we recommend that you use non-conditional fields (both
carets). A non-conditional turnaround field remains active whether you enter data or not.
Because the value in the data source is displayed in the field, that value remains in the
data source if you do not change it. Because the field remains active, the values for your
VALIDATEs and COMPUTEs are then accurate.

Designing Screens With FIDEL

1-10 Information Builders

How to Specify Different Field Types
Data entry (for data entry only):

<field[/length][>]

where:

field

Is the name of the field. Reserves space on the screen for data entry into that field and
does not display the current value of the field.

In MODIFY, if only the left caret is used, data entry is conditional. If both carets are used,
the field is non-conditional. For more information on non-conditional fields, see
Conditional and Non-Conditional Fields on page 1-21.

Display (for information only):

Data is displayed in a protected area and cannot be altered.

<D.field[/length]

where:

D.

Is the prefix placed in front of a field, indicating that the data or value is to be
displayed. The current value of the field displays on the screen, but in a protected
area which cannot be changed.

Note that the right caret is meaningless for display fields.

Turn-around field (for display and change):

Data is displayed in an unprotected area and can be altered.

<T.field[/length][>]

where:

T.

Is the prefix placed in front of a field to indicate that it is a turnaround field. The
current value of the field is displayed on the screen. However, the operator may
change the value, as it is not in a protected area. There is a limitation of 300 unique
T. fields that can be displayed on one CRTFORM.

In MODIFY, if only the left caret is present, the T. field is treated as conditional. If the
right caret is used, the field is non-conditional, and the value is treated as present, even if
unchanged.

Syntax

 Describing the CRT Screen

Designing Screens With FIDEL 1-11

Note: In MODIFY, in order to display data from a data source field or present it for
turnaround, a position in the data source must first be established through the use of a
MATCH or NEXT statement or value must be assigned in a COMPUTE. A computed
field cannot be set and displayed in the TOP case because in the TOP case, data entry is
processed prior to computations. For example, one of the phrases

ON MATCH CRTFORM
ON NEXT CRTFORM

must be used. A position is thus established in the data source, and the values of the fields
in existing records are now available for display as protected or unprotected fields.

You can also match on a key field and go to a case in which you display a CRTFORM
using display and turnaround fields.

Using Data Entry, Display, and Turnaround Fields
The following example combines two CRTFORMs in a single MODIFY request and
shows the use of entry, display, and turnaround fields.

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER"
"</2"

2. MATCH EMP_ID
ON NOMATCH REJECT

2. ON MATCH CRTFORM
" "
"REVISE DATA FOR SALARY AND DEPARTMENT"
"ENTER NEW DATA FOR EDUCATION HOURS"
" "

3. "EMPLOYEE ID #: <D.EMP_ID LAST_NAME: <D.LAST_NAME"
" "

4. "SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

5. "EDUCATION HOURS: <ED_HRS>"
ON MATCH UPDATE CURR_SAL DEPARTMENT ED_HRS

DATA VIA FIDEL
END

The procedure matches the employee ID, displays both the ID and the last name, and then
displays the current salary and department for turnaround. Education hours is a data entry
field.

Note that when the procedure executes, both CRTFORMs are displayed immediately.
However, the display and turnaround fields in the second CRTFORM do not display data
until the operator fills in the first form and presses Enter. We therefore recommend you
use the LINE option.

When a FORMAT ERROR occurs, all data entered up to that point is processed and
cannot be changed in the course of your transaction.

Example

Designing Screens With FIDEL

1-12 Information Builders

The processing is as follows:

1. CRTFORM generates the first form which begins on line 1 (the second CRTFORM
is displayed, but without values):

ENTER EMPLOYEE ID #:
PRESS ENTER

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: LAST NAME:
SALARY:
DEPARTMENT:
EDUCATION HOURS:

2. The procedure continues with the MATCH logic. If the ID number that is input
matches an ID in the data source, the display and turnaround fields on the second
CRTFORM display the data. Assume the operator enters 818692173 and presses
Enter.

 The following is displayed:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER

REVISE DATA FOR SALARY AND DEPARTMENT
ENTER NEW DATA FOR EDUCATION HOURS

EMPLOYEE ID #: 818692173 LAST NAME: CROSS
SALARY: 27062.00
DEPARTMENT: MIS
EDUCATION HOURS:

3. This screen line contains two display fields.

4. The next two screen lines contain turnaround fields.

5. The last line is a data entry field.

Note: To display fields from a unique segment, the ON MATCH CONTINUE TO, ON
NEXT, or MATCH WITH-UNIQUES phrase must have been executed.

Computed fields in MODIFY can be displayed in any kind of CRTFORM.

 Describing the CRT Screen

Designing Screens With FIDEL 1-13

Controlling the Use of PF Keys
Note: Keyboard functionality is not supported in this release. You can use your mouse to
click on individual PF keys.

The terminal operator can use certain PF keys to control the execution of a FIDEL
application. Normally the following keys are used:

• PF3 and PF15 mean END and terminate execution.

• PF2 means Cancel and cancels the transaction in MODIFY.

Note: All other keys return the value of the PF key when pressed.

Several facilities are available to assist you in controlling various screen operations:

• You can reset PF key functions. You can also set PF keys to branch to particular
cases in MODIFY.

• You can set the cursor on a specified position on the screen. See Specifying Cursor
Position on page 1-17 for more information.

• You can use the cursor position on the screen to perform a branch or action based on
a test. For more information, see Determining Current Cursor Position for
Branching Purposes on page 1-18.

Default Settings for PF Keys

PF Key Function

PF01 HX

PF02 CANCEL

PF03 END

PF04 RETURN

PF05 RETURN

PF06 RETURN

PF07 BACKWARD
Note: Not functional in HTML format (Desktop Viewer).

PF08 FORWARD
Note: Not functional in HTML format (Desktop Viewer).

PF09 RETURN

PF10 RETURN

Reference

Designing Screens With FIDEL

1-14 Information Builders

Resetting PF Key Controls
You can reset PF key functions in FIDEL for CRTFORMs using the FOCUS SET
command.

How to Reset PF Key Functions Using FOCUS SET Commands
SET PFxx = function

where:
xx

Is a one or two-digit PF key number.

function

Is one of the following:
END in MODIFY, exits the procedure.
CANCEL in MODIFY, cancels the transaction and returns to the TOP case.
FORWARD pages forward.
BACKWARD pages backward.
RETURN has no specific screen action. Returns the PF key name in the PFKEY field
because it is not yet defined. To set the PFKEY field, use COMPUTE in MODIFY.
HELP displays text supplied with the HELPMESSAGE attribute for any field on the
MODIFY CRTFORM. Position the cursor on the data entry area of the desired field,
and press the PF key you have defined for HELP. If no help message exists for that
field, the following message is displayed:

NO HELP AVAILABLE FOR THIS FIELD.

Note: When changing PF key settings, make sure that at least one key is set to END. If
you set a PF key to FORWARD, you should also set one to BACKWARD.

Setting PF Key Fields for Branching Purposes
You can create a menu of processing options. The operator can then indicate a choice by
pressing a particular PF key. To assign a specific processing function to a PF key, you
must specify a field named PFKEY. Which PF key the operator presses determines the
value of the PFKEY field.

You can use the PF keys designated as Return keys, as well as the Enter key. You define a
variable called PFKEY (in MODIFY) and then test its value after the CRTFORM is
displayed. Which branch takes place depends on which PFKEY the operator presses.

Syntax

 Describing the CRT Screen

Designing Screens With FIDEL 1-15

How to Set PF Keys for Branching Purposes
COMPUTE
PFKEY/A4=;

where:

PFKEY/A4

Is a four-character field, whose value is determined by which key the operator
presses at run time.

Testing PF Keys in MODIFY
1. COMPUTE

PFKEY/A4=;
2. CRTFORM

"SELECT OPTION"
"INPUT PRESS PF4"
"UPDATE PRESS PF5"
"DELETE PRESS PF6"

3. IF PFKEY EQ 'PF04' GOTO INCASE
ELSE IF PFKEY EQ 'PF05' GOTO UPCASE
ELSE IF PFKEY EQ 'PF06' GOTO DELCASE
ELSE GOTO TOP;

.

.

.

The example processes as follows:

1. The COMPUTE statement specifies a four-character field PFKEY.

2. CRTFORM generates the form which supplies the operator with three options:

SELECT OPTION
INPUT PRESS PF4
UPDATE PRESS PF5
DELETE PRESS PF6

3. The IF test determines what case to branch to depending on the value of the PFKEY
field. For example, if the operator presses PF4, the value for PFKEY is PF04, and the
request branches to an input case INCASE.

Example

Syntax

Designing Screens With FIDEL

1-16 Information Builders

Using Labeled Fields
You can use labels to identify a specific field on the screen. They are necessary to
perform the following functions:

• Dynamically change screen attributes during processing depending on the results of
tests.

• Position the cursor on the screen, or read the position of the cursor on the screen,
where there is no pre-existing field.

How to Use Labels to Identify a Specific Field on Screen
<:label.field

where:

label

Is a user-defined label. It starts with a colon (:) and may be up to 66 characters long
including the colon. You may not use embedded blanks.

field

Is any field on the CRTFORM. It can be a field created specifically for appending a
label.

Usage Notes for Labeling Fields
• A label cannot occur by itself. It must be used with a field.

• A label must be declared via a COMPUTE, -SET, or -DEFAULTS statement.

• Setting a label to $ returns its field to the default attribute.

Creating a Label via a COMPUTE
In the following example, the label ONE is set to a format of A6 and is the identifier of
the field EMP_ID.

COMPUTE
:ONE/A6=' ';
CRTFORM
"<:ONE.EMP_ID"

Example

Syntax

Reference

 Describing the CRT Screen

Designing Screens With FIDEL 1-17

Specifying Cursor Position
To specify cursor position you simply specify the field where you want the cursor
positioned. You may specify the field by its field name or by its label. You can set the
cursor at a specific place on the screen by computing or setting the value of the field
CURSOR.

How to Control Cursor Position in MODIFY
The following syntax is for the field which controls the cursor position in MODIFY.

COMPUTE
CURSOR/A66= expression;

where:

CURSOR/A66

Is a 66-character alphanumeric field.

expression

Is terminated with a semicolon and can be anything, including the full field name, its
full alias, a unique truncation of either, or the label itself. This determines the
position of the cursor.

Determining the Cursor Position

COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN 'EMP_ID'
ELSE 'LAST_NAME';

The position of the cursor will be on the field EMP_ID if the value of test name is greater
than 100, or it will be on the field LAST_NAME if test name is less than or equal to 100.

Positioning the Cursor Using a Field Label
COMPUTE
CURSOR/A66=IF TESTNAME GT 100 THEN ':ONE'
ELSE ':TWO';

Note: If the field name is not unique, FIDEL uses the first occurrence of the field name
(left to right across each line and then down to the next line) to set or test the cursor
position.

In MODIFY, the variable CURSORINDEX can also be used to compute the position of
the cursor at a particular record when there are multiple indexed records displayed in a
single CRTFORM. A common use of this feature is for placing the cursor on invalid
fields after VALIDATE statements.

Examples

Syntax

Designing Screens With FIDEL

1-18 Information Builders

How to Use the Variable CURSORINDEX
COMPUTE
CURSORINDEX/I5=expression;

where:

CURSORINDEX/I5

Is a five-digit integer field. Refers to the current value of the subscript being
processed from the CRTFORM.

expression

May be any expression, but in most applications will be set equal to
REPEATCOUNT.

Determining Current Cursor Position for Branching Purposes
Rather than having the operator type a response, you can create a menu on which you list
options. To select an option, the operator moves the cursor to the correct line on the
screen and presses the Enter key. FOCUS senses the cursor position and takes action
based upon it (such as branching to a particular case or field).

To do this, you must specify a 66 character field that contains the current cursor position,
CURSORAT. You may identify a field on the screen by a label or by its field name.

How to Define the Field Used to Read the Cursor Position
COMPUTE
CURSORAT/A66=;

where:

CURSORAT/A66

Is the field whose value is determined by the field name or label of the field on which
the cursor is positioned when the operator presses Enter.

If the actual cursor position is not on any field, the value of CURSORAT is the nearest
preceding field. If there are no preceding fields, the value of CURSORAT is the TOP of
the CRTFORM. That is, the value is at the very beginning of the CRTFORM.

Syntax

Syntax

 Describing the CRT Screen

Designing Screens With FIDEL 1-19

Using CURSORAT to Determine Cursor Position
In the following example, field XYZ is a computed field for the purpose of creating a
labeled field wherever necessary on the CRTFORM.

MODIFY FILE EMPLOYEE
1. COMPUTE

CURSORAT/A66=;
2. :ADD/A1=;

:UPP/A1=;
3. XYZ/A1=;
4. CRTFORM

"POSITION CURSOR NEXT TO OPTION DESIRED"
"THEN PRESS ENTER"
" "
"<:ADD.XYZ ADD RECORDS"
"<:UPP.XYZ UPDATE RECORDS"

5. IF CURSORAT EQ ':ADD' GOTO ADD ELSE
IF CURSORAT EQ ':UPP' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1

"THIS CRTFORM ADDS RECORDS"
" "
"EMPLOYEE ID #: <EMP_ID"
"LAST NAME:<LAST_NAME"
"FIRST NAME: <FIRST_NAME"
"HIRE DATE:<HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"THIS CRTFORM UPDATES RECORDS"
" "
"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-20 Information Builders

This example processes as follows:

1. The COMPUTE establishes the field CURSORAT.

2. The second and third COMPUTEs declare the labels :ADD and :UPP.

3. The fourth COMPUTE establishes a field XYZ for the purpose of using labels.

4. CRTFORM generates the following visual form beginning on the first line of the
screen:

POSITION CURSOR NEXT TO OPTION DESIRED
THEN PRESS ENTER

ADD RECORDS
UPDATE RECORDS

5. An IF phrase tests the value of the field CURSORAT. If the operator places the
cursor next to ADD RECORDS, the value of CURSORAT is :ADD and a branch to
Case ADD will be performed. If the operator places the cursor next to UPDATE
RECORDS, the value of CURSORAT is :UPP and Case UPP will be performed.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-21

Using FIDEL in MODIFY
The following standard MODIFY functions and concepts work with FIDEL in the
building of CRTFORMs:

• Conditional and non-conditional field specification. See Conditional and
Non-Conditional Fields on page 1-21 for details.

• The FIXFORM statement which can be used before the first CRTFORM. This
enables you to mix data sources. For more information, see Using FIXFORM and
FIDEL in a Single MODIFY on page 1-26.

• Automatic application generation which enables you to use several simple statements
to generate automatic data management procedures and CRTFORMs. See
Generating Automatic CRTFORMs on page 1-30 for details.

• Multiple CRTFORMs for different processing options. The additional FIDEL facility
of the LINE option helps you organize the use of multiple CRTFORMs. See Using
Multiple CRTFORMs: LINE on page 1-34 for more information.

• Case Logic which enables you to divide the processing into logical subdivisions for
particular sets of circumstances. For more information, see CRTFORMs and Case
Logic on page 1-41.

• Groups of fields. See Specifying Groups of Fields on page 1-43 for details.

• VALIDATES and various error handling formats. For more information, see
Handling Errors on page 1-53.

• Log files that preserve a record of all data that is entered onto the screen. For details,
see Logging Transactions on page 1-58.

MODIFY also has additional screen control options such as clearing the screen, setting
the height and width parameters, and changing the default size of the TYPE message area
in order to enlarge the CRTFORM. See Additional Screen Control Options on page 1-58
for more information.

Conditional and Non-Conditional Fields
When you execute a MODIFY request, FOCUS keeps track of which transaction fields
are active or inactive during execution. In order to add, update, and delete segment
instances, the fields must be active.

You can define data entry and turnaround fields as either conditional or non-conditional.
A conditional field is conditionally active. That is, it becomes active only if there is
incoming data present for the field. Otherwise, it remains inactive. A non-conditional field
is always active whether there is incoming data present or not.
When you are performing update operations, there are several important points to keep in
mind when you choose whether to specify a field as conditional or non-conditional.

Designing Screens With FIDEL

1-22 Information Builders

Usage Notes for Determining Whether to Specify a Field as
Conditional or Non-Conditional
• If data is entered or changed, the data source value is always updated and the field

always becomes active. This is true whether the field is conditional or
non-conditional.

• If data is not entered or changed, what happens to the data source value is dependent
on whether the field is conditional or non-conditional as well as program logic. The
following table outlines this.

Type of Field Syntax Active/Inactive Database Value Transaction
Value

Conditional
Entry

< Active
(changed)

Displayed value
replaces data
source value.

Value.

 Inactive Remains. Blank.

Conditional
Turnaround

<T. Active
(changed)

Displayed value
replaces data
source value.

Value.

 Inactive Remains. Blank.

Non-conditional
Entry

< > No user entry Displayed value
replaces data
source value
(blank or 0).

Value.

Non-conditional
Turnaround

<T.> No user entry Displayed value
replaces data
source value
(same value).

Value.

• If a field is active, the displayed value always becomes the new data source value. In
turnaround fields, this is by definition the same value.

• If a field is inactive, the displayed value is always ignored.

• If you compute a data source field and then display it on the CRTFORM with a D. or
a T., the field must still be active to get the computed value displayed on the screen.
Otherwise, you get a blank or a 0.

• When you use a VALIDATE for a field, the field must be active. Otherwise you do
not get the accurate data source value validated; instead, you get a blank or 0.

Note: You can make a field active or inactive by using the ACTIVATE or
DEACTIVATE statement respectively.

Reference

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-23

Using Conditional and Non-Conditional Display and
Turnaround Fields
The following example illustrates the display and turnaround field features as well as the
use of a non-conditional turnaround field (both carets). The first CRTFORM asks for a
key field value, in this case EMP_ID. If a matching record is obtained, then some data
source values are displayed and others are shown for turnaround update.

Note how the non-conditional turnaround field functions in the following example.
Whether the displayed value is changed or not, the value in the data source is active. The
VALIDATE uses the display value, whether it was changed or not.

MODIFY FILE EMPLOYEE
1. CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"PRESS ENTER BEFORE CONTINUING"
"--"

MATCH EMP_ID
ON NOMATCH TYPE

"EMPLOYEE ID NOT IN DATABASE. PLEASE REENTER."
ON NOMATCH REJECT

2. ON MATCH CRTFORM LINE 4
" "
"EMPLOYEE ID #: <D.EMP_ID"
"LAST NAME: <D.LAST_NAME"
"HIRE DATE: <D.HIRE_DATE"
"SALARY: <T.CURR_SAL>"
"DEPARTMENT: <T.DEPARTMENT>"

3. ON MATCH VALIDATE
SALTEST = IF CURR_SAL GT 0 THEN 1 ELSE 0;
ON INVALID TYPE

"SALARY MUST BE GREATER THAN 0"
"CORRECT SALARY AND PRESS ENTER TWICE"

ON MATCH UPDATE CURR_SAL DEPARTMENT
DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-24 Information Builders

The example processes as follows:

1. When the procedure executes, the top part of the CRTFORM displays as follows:

ENTER EMPLOYEE ID #:
PRESS ENTER BEFORE CONTINUING

If the employee ID entered does not match an ID in the data source, the transaction is
rejected and a TYPE statement appears at the bottom of the screen. Assume the
operator enters the following employee ID:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

2. If the ID entered matches an ID in the data source, FOCUS successfully retrieves a
record. The ON MATCH CRTFORM causes a second CRTFORM to be displayed
on line 4. This CRTFORM contains both display and turnaround fields. The data
source values of the fields appear on the second CRTFORM, and the cursor is
positioned at the start of the CURR_SAL field which is the first unprotected field.
Note that both CURR_SAL and DEPARTMENT are automatically highlighted for
turnaround:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: MIS

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-25

Assume the operator updates DEPARTMENT, does not change CURR_SAL, and
transmits the CRTFORM:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE 811102
SALARY: 27062.00
DEPARTMENT: ois

3. When the operator presses Enter, the transaction is processed. If the value of
CURR_SAL is greater than 0, the VALIDATE will evaluate as 1 (true) and
processing continues. Although a value was not entered for CURR_SAL, the field is
active because it is specified as a non-conditional field. Thus, the VALIDATE reads
the current value in the T. field (27062.00), and validates the field. The transaction is
then processed.

If you specify the turnaround field as conditional (only the left caret), the field is inactive
if no data is entered. Assume the same transaction as above. The operator updates the
DEPARTMENT and does not enter new data for the CURR_SAL field. The VALIDATE
does not read the T. value because the field is inactive and instead reads a 0. The field is
invalidated and the following error message occurs:

ENTER EMPLOYEE ID #: 818692173
PRESS ENTER BEFORE CONTINUING

EMPLOYEE ID #: 818692173
LAST NAME: CROSS
HIRE DATE: 811102
SALARY: 27062.00
DEPARTMENT: ois

(FOC421)TRANS 1 REJECTED INVALID SALTEST
INVALID SALARY
SALARY MUST BE GREATER THAN 0

Designing Screens With FIDEL

1-26 Information Builders

Using FIXFORM and FIDEL in a Single MODIFY
A MODIFY procedure can mix data sources from CRTFORMs and FIXFORMs.

• You can have only one FIXFORM statement and you must specify the name of the
transaction data source. For example:

FIXFORM ON filename

• The FIXFORM statement must precede the CRTFORM statement.

• START and STOP do not apply.

• You must use the DATA VIA FIDEL statement for CRTFORM data input.

This feature is useful in situations where a known set of records is wanted and the keys
for these records reside on an external fixed format data source. (The data source may
have been produced by a prior TABLE and SAVE or HOLD command.) The procedure
first reads a key, fetches the matching record, and displays it on the CRTFORM specified.

This is also convenient when the FIXFORM is included in a START case.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-27

Using FIXFORM With FIDEL
To run this example on your machine, you must first create a sequential data source with
data. To do so, execute the following TABLE request:

TABLE FILE EMPLOYEE
PRINT EMP_ID PAY_DATE
IF PAY_DATE GE 820730
ON TABLE SAVE AS PAYTRANS
END

This creates the transaction data source PAYTRANS. Then execute the following
MODIFY request:

MODIFY FILE EMPLOYEE
1. FIXFORM ON PAYTRANS EMP_ID/9 PAY_DATE/6
2. MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
3. ON MATCH/NOMATCH CRTFORM

"EMPLOYEE ID #: <D.EMP_ID"
"PAY DATE: <D.PAY_DATE"
"MONTHLY GROSS: <T.GROSS>"

ON NOMATCH INCLUDE
ON MATCH UPDATE GROSS

DATA VIA FIDEL
END

The example processes as follows:

1. First the data is read in from the sequential data source PAYTRANS.

2. The EMP_ID from PAYTRANS is matched against EMP_IDs in the EMPLOYEE
data source. If it matches, PAY_DATE is matched.

3. The CRTFORM is displayed with display values for EMP_ID and PAY_DATE. If
there is a match on PAY_DATE, GROSS is displayed as a turnaround field and the
operator can update it. If there is no match on PAY_DATE, both PAY_DATE and
GROSS are included:

EMPLOYEE ID #: 071382660
PAY_DATE: 820831
MONTHLY GROSS: 916.67

The procedure ends when there are no more transactions on the external data source to
read. It can also be terminated by the operator pressing the PF1 or PF3 key.

Example

Designing Screens With FIDEL

1-28 Information Builders

Default CRTFORM Processing Within the Same MODIFY Request
All CRTFORM commands within the same MODIFY request are concatenated into a
single screen image and displayed simultaneously. These CRTFORMs follow one another
on the screen. The first CRTFORM is displayed on line 1, the second begins on the line
after the end of the first. They are displayed immediately upon the execution of the
MODIFY and are not affected by the conditions set up by MATCH logic (for example,
when the MODIFY request accesses multiple segments of the data source). You can
override this default by specifying the LINE option in the CRTFORM command. For
additional information on the LINE option, see Using Multiple CRTFORMs: LINE on
page 1-34.

When turnaround or display fields within a CRTFORM are dependent on MATCH logic
or the value of a key field that has yet to be provided, these fields remain blank until the
correct information is entered or the MATCH has been performed. Once the value of the
key field is provided, the turnaround and display fields will contain the correct
information.

Both of these characteristics are displayed in the following MODIFY request which
contains two CRTFORMs: the first modifying the root segment, EMPINFO of the
EMPLOYEE data source, and the second modifying a child segment, BANKINFO.
MODIFY FILE EMPLOYEE
CRTFORM
" "
"--"
"EMPLOYEE ID #: <EMP_ID LAST NAME: <LAST NAME"
" "
"DEPARTMENT: <DEPARTMENT <28 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"--"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME

ON NOMATCH INCLUDE
ON MATCH/NOMATCH CRTFORM

"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "

"--"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"--"

ON MATCH UPDATE BA BC EDATE
DATA VIA FIDEL
END

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-29

When the request is executed, both CRTFORMs display:

EMPLOYEE ID #: LAST NAME:

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER

FUND TRANSFER INFORMATION UPDATE

BANK: ACCT #:

BANK CODE: START DATE:

The turnaround and display fields in the second CRTFORM will not contain any values
until values have been entered for the upper key. When you fill in the top part of the
CRTFORM and press Enter, the screen will be refreshed and the display and turnaround
fields in the second part of the CRTFORM will contain the appropriate values.

EMPLOYEE ID #: 818692173 LAST NAME: CROSS

DEPARTMENT: MIS SALARY: 27062.00

BANK: BANK ASSOCIATION

FILL IN THE ABOVE FORM AND PRESS ENTER

FUND TRANSFER INFORMATION UPDATE

BANK: BANK ASSOCIATION ACCT #: 163800144

BANK CODE: 175963 START DATE: 830501

At this point you can modify any of the turnaround fields for the BANKINFO segment.
When you press Enter again, the transaction will be processed by FOCUS and a new
composite CRTFORM is displayed.

Designing Screens With FIDEL

1-30 Information Builders

Generating Automatic CRTFORMs
You can use several simple but powerful statements with the FOCUS MODIFY facility to
allow immediate generation of data management requests. You do not need to learn the
complete FOCUS MODIFY language. Without mentioning field names, you can write
general-purpose requests and customize them for more detailed situations.

How to Automatically Specify Conditional Fields
The statements can be used with multi-segment data sources as well as simple data
sources. These statements automatically specify conditional fields. They include:

CRTFORM * [SEG n] Design screen for all real data fields in segment n, where
n is either the segment name or number.

CRTFORM * KEYS [SEG n] Design screen for all key fields in segment n.

CRTFORM * NONKEYS [SEG n] Design screen for all non-key fields in segment n.

CRTFORM T.* [SEG n] Design screen using T.fields in segment n.

CRTFORM D.* [SEG n] Design screen using D.fields in segment n.
Note: The use of CRTFORM * on a COMBINE data source name is illogical and may
produce unpredictable results.

How to Obtain Segment Names and Numbers
You can optionally specify the segment name or number for each of the CRTFORMs. To
obtain the segment names and numbers, enter the following command where file is the
name of the data source:

CHECK FILE file PICTURE

The names and numbers appear on the top of each segment in the diagram. You may also
list segment names and numbers by entering the command:

? FDT filename

Generating Automatic CRTFORMS to Add and Maintain Data

If you are modifying all the segments in the data source (except for unique segments), you
can write the request without using Case Logic. The following example adds and
maintains data for the EMPLOYEE data source. The segments are as follows:

• Segment 1 contains basic employee data (for example, names, jobs, salaries).

• Segment 3 contains employee salary histories.

• Segment 7 stores employees’ home addresses and information on their bank
accounts.

Example

Syntax

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-31

• Segment 8 stores employee monthly pay.

• Segment 9 stores monthly deductions.

(Segment 2 is a unique segment. Segments 4, 5, and 6 are cross-referenced segments that
are not part of the EMPLOYEE data source.)

The request is:

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS </1"
"INSTRUCTIONS"
"1. ENTER DATA FOR EACH FIELD"
"2. USE TAB KEY TO MOVE CURSOR"
"3. PRESS ENTER WHEN FINISHED"
"4. WHEN YOU FINISH ALL RECORDS, PRESS PF1 </1"

CRTFORM * KEYS
MATCH * KEYS SEG 01

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 01
ON MATCH UPDATE * SEG 01
ON NOMATCH INCLUDE

MATCH * KEYS SEG 03
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03
ON MATCH UPDATE * SEG 03
ON NOMATCH INCLUDE

MATCH * KEYS SEG 07
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

MATCH * KEYS SEG 08
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 08
ON MATCH UPDATE * SEG 08
ON NOMATCH INCLUDE

MATCH * KEYS SEG 09
ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 09
ON MATCH UPDATE * SEG 09
ON NOMATCH INCLUDE

DATA VIA FIDEL
END

Designing Screens With FIDEL

1-32 Information Builders

When the procedure executes, the screen displays as follows:

THIS PROCEDURE ADDS NEW RECORDS AND UPDATES EXISTING RECORDS

INSTRUCTIONS
1. ENTER DATA FOR EACH FIELD
2. USE TAB KEY TO MOVE CURSOR
3. PRESS ENTER WHEN FINISHED
4. WHEN YOU FINISH ALL RECORDS, PRESS PF1

EMP_ID : :
DAT_INC : :
TYPE : :
PAY_DATE : :
DED_CODE : :

LAST_NAME : : FIRST_NAME : :
HIRE_DATE : : DEPARTMENT : :
CURR_SAL : : CURR_JOBCODE : :
ED_HRS : :

PCT_INC : : SALARY : :
JOBCODE : :

ADDRESS_LN1 : :
ADDRESS_LN2 : :
ADDRESS_LN3 : :

ACCTNUMBER : :

GROSS : :

Notice that the fields are divided into five groups. The first group consists of all the key
fields in the data source. Each subsequent group consists of all non-key fields in a
particular segment. Fill in each group from top to bottom and press Enter before filling in
the next group. When you do this the request uses the values to match on the segments
specified later in the request.

The first CRTFORM statement generates the first group of fields, which are all the key
fields in the data source:

CRTFORM * KEYS

The MATCH statements in the request modify each of the segments in the data source.
Each statement contains a CRTFORM phrase that prompts for all non-key fields in the
segment:

CRTFORM T.* NONKEYS SEG xx

Note that the CRTFORM phrase displays the fields as turnaround fields. After you fill in
the fields in the group and press Enter, FOCUS uses the field values to update the
segment.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-33

You can add the following enhancements to the request:

• The LINE option on each CRTFORM statement.

• Explanatory text after each CRTFORM statement.

• A separate CRTFORM containing explanatory text at the beginning of the request.

Using the MATCH Statement to Add and Maintain Data
If you want to modify some but not all segments in the data source, use Case Logic to
write the request. Place each MATCH statement in a separate case. The following
example adds and maintains data for the EMPLOYEE data source. The segments are as
follows:

• Segment 1 contains basic employee data (for example, names, jobs, salaries).

• Segment 3 contains employee salary histories.

• Segment 7 stores employees’ home addresses and information on their bank
accounts.

• Segment 8 stores employee monthly pay.

• Segment 9 stores monthly deductions.

(Segment 2 is a unique segment. Segments 4, 5, and 6 are cross-referenced segments that
are not part of the EMPLOYEE data source.)

This request modifies data in Segments 1, 3, and 7:

MODIFY FILE EMPLOYEE
CRTFORM

"THIS PROCEDURE MAINTAINS EMPLOYEE"
"JOB DATA, SALARY HISTORIES, AND ADDRESSES"
" "

CRTFORM * KEYS
"FILL IN EMP_ID, DAT_INC, AND TYPE FIELDS"
"THEN PRESS ENTER"

GOTO EMPLOYEE

CASE EMPLOYEE
MATCH * KEYS SEG 01

ON NOMATCH REJECT
ON MATCH CRTFORM T.* NONKEYS SEG 01 LINE 10
ON MATCH UPDATE * SEG 01
ON MATCH GOTO MONTHPAY

ENDCASE

Example

Designing Screens With FIDEL

1-34 Information Builders

CASE MONTHPAY
MATCH * KEYS SEG 03

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 03 LINE 10
ON MATCH UPDATE * SEG 03
ON MATCH GOTO DEDUCT
ON NOMATCH INCLUDE
ON NOMATCH GOTO DEDUCT

ENDCASE

CASE DEDUCT
MATCH * KEYS SEG 07

ON MATCH/NOMATCH CRTFORM T.* NONKEYS SEG 07 LINE 10
ON MATCH UPDATE * SEG 07
ON NOMATCH INCLUDE

ENDCASE
DATA VIA FIDEL
END

Using Multiple CRTFORMs: LINE
You can choose what screen line the CRTFORM will begin on by using the LINE option.
By default, the first CRTFORM begins on line 1. The next CRTFORM in the procedure
begins on the line following the end of the previous CRTFORM. For example, if one
screen uses 12 lines, the next CRTFORM automatically begins on the 13th line.

The LINE option enables you to control both the placement of a CRTFORM on the
screen and the timing with which it displays on the screen. Using LINE gives you the
following options:

• You can have one logical form replace another after each transaction by having
subsequent CRTFORMs begin on the same line.

• You can build mixed screens by saving lines from a previous CRTFORM on the
screen while executing a subsequent CRTFORM. In other words, the first
CRTFORM is displayed, the operator transmits the data, and the next CRTFORM is
displayed while the previous one remains on the screen.

How to Use the LINE Option
CRTFORM [LINE nn]

where:

nn

Is the starting line number for the CRTFORM.

Syntax

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-35

Using the LINE Option
In the following example there are two logical forms: EMPLOYEE UPDATE and FUND
TRANSFER INFORMATION UPDATE. It illustrates the placement of CRTFORMs
when the default is in effect (that is, the LINE option is not used).

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <28 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME

ON NOMATCH INCLUDE
2. ON MATCH/NOMATCH CRTFORM

"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"

ON MATCH UPDATE BA BC EDATE
DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-36 Information Builders

This produces the following screen when the request is executed:

EMPLOYEE UPDATE

EMPLOYEE ID #: LAST_NAME:

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER

FUND TRANSFER INFORMATION UPDATE

BANK: ACCT #:

BANK CODE: START DATE:

Note that when the default is in effect, each logical form is displayed one after the other
on the screen, the instant the MODIFY procedure is executed. That is, all the distinct
CRTFORMs are concatenated into one visual form.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-37

Using the LINE Option to Replace a Screen
To completely replace one screen with the next, both CRTFORMs must start on the same
line.

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 1
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-38 Information Builders

1. When the MODIFY procedure is executed, the following screen is displayed:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: LAST_NAME:

DEPARTMENT: SALARY:

BANK:

FILL IN THE ABOVE FORM AND PRESS ENTER
--

2. After the operator enters and transmits the data, the next CRTFORM replaces the
previous one on the screen:

FUND TRANSFER INFORMATION UPDATE

--
BANK: ACCT #:

BANK CODE: START DATE:
--

Generally, it is a good practice to put LINE 1 on all CRTFORMs that start a new case
unless a specific screen pattern is wanted.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-39

Using the LINE Option to Create a Mixed Screen
A combination of two or more individual CRTFORMs can occupy specific lines on one
screen. To obtain a mixed screen, place the desired starting line number with the
CRTFORM statement. The following example demonstrates how you can create mixed
screens using the LINE option.

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE UPDATE"
" "
"---"
"EMPLOYEE ID #: <EMP_ID LAST_NAME: <LAST_NAME"
" "
"DEPARTMENT: <DEPARTMENT <30 SALARY: <CURR_SAL"
" "
"BANK: <BANK_NAME"
" "
"FILL IN THE ABOVE FORM AND PRESS ENTER"
"---"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
ON MATCH CONTINUE TO BANK_NAME
ON NOMATCH INCLUDE

2. ON MATCH/NOMATCH CRTFORM LINE 12
"</1"
"FUND TRANSFER INFORMATION UPDATE"
" "
"---"
"BANK: <D.BN ACCT #: <T.BA"
" "
"BANK CODE: <T.BC <30 START DATE: <T.EDATE"
"---"
ON MATCH UPDATE BA BC EDATE

DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-40 Information Builders

Processing occurs as follows:

1. Like the preceding examples, this produces the first screen. Assume the operator
enters and transmits the following data:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS SALARY: 18480

BANK: STATE

FILL IN THE ABOVE FORM AND PRESS ENTER
--

2. The first CRTFORM remains on the screen while the next CRTFORM is displayed
on line 12:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

DEPARTMENT: MIS CURRENT SALARY: 18480

BANK: STATE
--

FUND TRANSFER INFORMATION AND UPDATE
--
BANK: STATE ACCT #:

BANK CODE: START DATE:
--

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-41

You can save certain lines from the preceding CRTFORM while you discard others. In
the previous example, if you begin the second CRTFORM on line 6, the EMP_ID and the
LAST_NAME remain and the next line is the beginning of the FUND TRANSFER
INFORMATION AND UPDATE.

1. Assume the operator enters and transmits data on the first CRTFORM. Part of the
first logical form disappears and the second form is displayed. Thus, a new visual
form is created:

EMPLOYEE UPDATE

--
EMPLOYEE ID #: 117593129 LAST_NAME: JONES

FUND TRANSFER INFORMATION AND UPDATE

--
BANK: STATE ACCT #: 40950036

BANK CODE: 510271 START DATE: 821101
--

You can create mixed screens using the LINE option, in a variety of ways, depending on
the need of the application.

CRTFORMs and Case Logic
Case Logic enables you to perform separate complete MODIFY processes in one
procedure. Each of these is a case, and the procedure contains directions about which case
to execute under various circumstances.

When you use the Case Logic option of the MODIFY command, you can create a pattern
of many CRTFORMs.

When there are multiple CRTFORMs in a single MODIFY request, use the LINE option
to specify where each CRTFORM will be displayed. With Case Logic, generally, we
recommend that you use LINE 1 to replace one screen with another.

Designing Screens With FIDEL

1-42 Information Builders

Using Case Logic With CRTFORM
The following example illustrates the use of Case Logic with the CRTFORM.

MODIFY FILE EMPLOYEE
COMPUTE

PFKEY/A4= ;
CRTFORM

"TO INPUT A NEW RECORD, PRESS PF4"
"TO UPDATE AN EXISTING RECORD, PRESS PF5"

IF PFKEY EQ 'PF04' GOTO ADD ELSE
IF PFKEY EQ 'PF05' GOTO UPP ELSE GOTO TOP;

CASE ADD
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"LAST NAME:<LAST_NAME FIRST NAME: <FIRST_NAME"
"HIRE DATE:<HIRE_DATE"
"DEPARTMENT: <DEPARTMENT"

MATCH EMP_ID
ON MATCH REJECT
ON NOMATCH INCLUDE

ENDCASE

CASE UPP
CRTFORM LINE 1

"EMPLOYEE ID #: <EMP_ID"
"DEPARTMENT: <DEPARTMENT"
"JOB CODE: <CURR_JOBCODE"
"SALARY: <CURR_SAL"
MATCH EMP_ID

ON NOMATCH REJECT
ON MATCH UPDATE DEPARTMENT CURR_JOBCODE CURR_SAL

ENDCASE
DATA VIA FIDEL
END

Example

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-43

The first CRTFORM displays as:

TO INPUT A NEW RECORD, PRESS PF4
TO UPDATE AN EXISTING RECORD, PRESS PF5

If the operator presses PF4, the following is displayed:

EMPLOYEE ID #:
LAST NAME: FIRST NAME:
HIRE DATE:
DEPARTMENT:

If the operator presses PF5, the following is displayed:

EMPLOYEE ID #:
DEPARTMENT:
JOB CODE:
SALARY:

Note: At the end of a MODIFY procedure, control defaults to the TOP Case.

Specifying Groups of Fields
Groups of fields (that is, more than one occurrence of the same field) can be specified on
the CRTFORM in two ways:

• Specifying a field more than once on a CRTFORM.

• Using REPEAT syntax.

You can use Case Logic to process groups of fields.

Designing Screens With FIDEL

1-44 Information Builders

Specifying Groups of Fields for Input
A group of fields may repeat on the form. For example:

"EMPLOYEE ID DEPARTMENT SALARY"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"
"<EMP_ID <DPT <CURR_SAL"

This reads the same data as the FIXFORM statement:

FIXFORM 3(EMP_ID/C9 DPT/C10 CURR_SAL/C14)

Repeating Groups of Fields
The following example shows the use of repeating groups for a single employee ID.

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID #: <EMP_ID"
" "
"ENTER PAY DATE AND GROSS PAY FOR ABOVE EMPLOYEE"
" "
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"
"PAY DATE: <PAY_DATE GROSS: <GROSS"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH CONTINUE

MATCH PAY_DATE
ON MATCH REJECT
ON NOMATCH INCLUDE

DATA VIA FIDEL
END

Note: A group of repeated data fields cannot be specified on a MATCH or NOMATCH
CRTFORM. They must be presented on a primary CRTFORM (that is, one not generated
as a result of a MATCH or NOMATCH command).

This procedure processes as follows:

ENTER EMPLOYEE ID #: 818692173

ENTER PAY DATE AND GROSS AMOUNT FOR ABOVE EMPLOYEE

PAY DATE: 850405 GROSS: 3000.00
PAY DATE: 850412 GROSS: 4000.00
PAY DATE: 850418 GROSS: 2500.00

When the operator presses Enter, the transaction processes. Processing continues until a
line with no data is found or all lines are completed, whichever comes first.

Examples

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-45

Using REPEAT to Display Multiple Records
You can display multiple segment instances on the screen by directing FIDEL to read and
display the contents of a HOLD buffer.

How to Identify an Instance in the Hold Buffer Using a
Subscript Value
field(n)

where:

field

Is the name of a previously held field.

n

Is the integer subscript that identifies the number of the instance in the HOLD buffer
containing the field to be displayed. n must be in integer format or the report group
will be ignored.

The variable SCREENINDEX allows you to display and modify selected groups of
records from the HOLD buffer.

Syntax

Designing Screens With FIDEL

1-46 Information Builders

Using the REPEAT Statement to Display Multiple Records
The following example uses the REPEAT statement to retrieve up to a set number (in this
case, six) of multiple instances, saves them in the HOLD buffer, and then displays the
instances on the CRTFORM.

MODIFY FILE EMPLOYEE
1. CRTFORM

"PAY HISTORY UPDATE"
" "
"ENTER EMPLOYEE ID#: <EMP_ID"

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH GOTO COLLECT

CASE COLLECT
���� REPEAT 6 TIMES

2.���� NEXT PAY_DATE
���� ON NEXT HOLD PAY_DATE GROSS
����

3.���� ON NONEXT GOTO DISPLAY
���� ENDREPEAT
GOTO DISPLAY
ENDCASE

CASE DISPLAY
IF HOLDCOUNT EQ 0 GOTO TOP;

4. COMPUTE
BUFFNUMBER/I5 = HOLDCOUNT;

5. CRTFORM LINE 5
"FILL IN GROSS AMOUNT FOR EACH PAY DATE"
" "
"PAY DATE GROSS AMOUNT"
"-------- ------------"
"<D.PAY_DATE(1) <T.GROSS(1)>"
"<D.PAY_DATE(2) <T.GROSS(2)>"
"<D.PAY_DATE(3) <T.GROSS(3)>"
"<D.PAY_DATE(4) <T.GROSS(4)>"
"<D.PAY_DATE(5) <T.GROSS(5)>"
"<D.PAY_DATE(6) <T.GROSS(6)>"

GOTO UPDATE
ENDCASE

CASE UPDATE
6. REPEAT BUFFNUMBER

MATCH PAY_DATE
ON NOMATCH REJECT
ON MATCH UPDATE GROSS

ENDREPEAT
GOTO COLLECT
ENDCASE

DATA VIA FIDEL
END

Example

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-47

The procedure processes as follows:

1. When the procedure is executed, the first CRTFORM is displayed:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #:

2. Assume the operator enters the following ID and transmits the data:

ENTER EMPLOYEE ID #: 071382660

If there is a match, the instruction is to REPEAT the logic six times. That is, up until
six times, find a PAY_DATE and hold the PAY_DATE and the GROSS in the
HOLD buffer.

3. When there are no more PAY_DATE fields or six of them have been held, the
procedure branches to CASE DISPLAY.

4. The procedure stores the number of records that are in the HOLD buffer in the
variable BUFFNUMBER.

Designing Screens With FIDEL

1-48 Information Builders

5. The procedure displays the following CRTFORM:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT
820831 916.67
820730 916.67
820630 916.67
820528 916.67
820430 916.67
820331 916.67

The operator makes changes to the fields in the GROSS AMOUNT column and
presses Enter. All changes for all records are transmitted simultaneously as shown:

PAY HISTORY UPDATE

ENTER EMPLOYEE ID #: 071382660

FILL IN GROSS AMOUNT FOR EACH PAY DATE

PAY DATE GROSS AMOUNT
820831 816.67
820730 816.67
820630 816.67
820528 916.67
820430 916.67
820331 916.67

6. The REPEAT statement instructs FOCUS to perform the MODIFY logic on all
segment instances.

Note: If a CRTFORM screen with subscripted variables is rejected with a FORMAT
ERROR, you may not alter any records on the screen prior to the record rejected, as
FOCUS has already held them.

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-49

Using Groups of Fields With Case Logic
Case Logic can be used to process a group of fields. For additional information on Case
Logic, see CRTFORMs and Case Logic on page 1-41.

Usage Notes When Using Case Logic to Process a Group of
Fields
• Each time the procedure enters the case, the next group of fields is processed.

FOCUS keeps track internally of which groups have been processed.

• If the CRTFORM with the group of fields is not in the TOP case, you must create
your own branching logic to process all the groups before going back to the TOP.
This normally needs some kind of counting mechanism. Once the procedure goes
back to the TOP case, all unprocessed data on the CRTFORM or in a lower case is
lost.

Using Case Logic With Groups of Fields
The following example shows the CURSORINDEX being used in conjunction with a
VALIDATE. For more information on CURSORINDEX, see Specifying Cursor Position
on page 1-17.

MODIFY FILE EMPLOYEE
1. CRTFORM

"EMPLOYEE SALARY AND DEPARTMENT UPDATE"
" "
"PRESS ENTER"

GOTO COLLECT

CASE COLLECT
2. REPEAT 6 TIMES

NEXT EMP_ID
ON NEXT HOLD EMP_ID CURR_SAL DEPARTMENT
ON NONEXT GOTO DISPLAY

ENDREPEAT
GOTO DISPLAY
ENDCASE

Example

Reference

Designing Screens With FIDEL

1-50 Information Builders

CASE DISPLAY
3. IF HOLDCOUNT EQ O GOTO EXIT;
4. COMPUTE

BUFFNUMBER/I5 = HOLDCOUNT;
5. CRTFORM LINE 7

"EMPLOYEE SALARY DEPARTMENT"
"-------- ------ ----------"
"<D.EMP_ID(1) <:AAA.T.CSAL(1)> <:BBB.T.DPT(1)>"
"<D.EMP_ID(2) <:AAA.T.CSAL(2)> <:BBB.T.DPT(2)>"
"<D.EMP_ID(3) <:AAA.T.CSAL(3)> <:BBB.T.DPT(3)>"
"<D.EMP_ID(4) <:AAA.T.CSAL(4)> <:BBB.T.DPT(4)>"
"<D.EMP_ID(5) <:AAA.T.CSAL(5)> <:BBB.T.DPT(5)>"
"<D.EMP_ID(6) <:AAA.T.CSAL(6)> <:BBB.T.DPT(6)>"

6. REPEAT 6 TIMES
COMPUTE

CURSOR/A66 = ':AAA';
CURSORINDEX/I5=REPEATCOUNT;

VALIDATE
SALTEST = IF CSAL GT 50000 THEN 0 ELSE 1;
ON INVALID TYPE "SALARY MUST BE LESS THAN $50,000"
ON INVALID GOTO DISPLAY

ENDREPEAT
GOTO UPDATE
ENDCASE

CASE UPDATE
7. REPEAT BUFFNUMBER

MATCH EMP_ID
ON NOMATCH REJECT
ON MATCH UPDATE CURR_SAL DEPARTMENT

ENDREPEAT
GOTO COLLECT
ENDCASE
DATA VIA FIDEL
END

 Using FIDEL in MODIFY

Designing Screens With FIDEL 1-51

The example processes as follows:

1. The first CRTFORM requests the operator to press Enter without typing anything.

2. The REPEAT statement retrieves six employee IDs, salaries, and department
assignments and places them in a buffer.

3. If there are no records in the buffer, the procedure terminates.

4. The COMPUTE statement stores the number of records in the buffer in the variable
BUFFNUMBER.

5. The second CRTFORM retrieves the IDs, salaries, and department assignments from
the buffer and displays them together on the screen. Note the field labels:

 The label :AAA on the CURR_SAL (CSAL) field.

 The label :BBB on the DEPARTMENT (DPT) field.

 Assume that the operator changes the values to the following:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

Designing Screens With FIDEL

1-52 Information Builders

6. The second REPEAT statement operates on each of the six records displayed by the
second CRTFORM, in order of display, performing the following tasks:

Sets the CURSOR variable to the label :AAA.

Sets the CURSORINDEX variable to the number of the record it is processing (1
through 6).

Validates the CURR_SAL field value. If the CURR_SAL value is $50,000 or more,
the procedure branches back to the beginning of Case DISPLAY. The procedure
displays the second CRTFORM again, with the CURSOR and CURSORINDEX
variables positioning the cursor on the invalid salary.

In the example, the procedure positions the cursor on the third CURR_SAL value:

EMPLOYEE SALARY AND DEPARTMENT UPDATE

PRESS ENTER

EMPLOYEE SALARY DEPARTMENT
-------- ------ ----------
071382660 35000.00 PRODUCTION
112847612 23200.00 MIS
117593129 _75480.00 MIS
119265415 19500.00 PRODUCTION
119329144 39700.00 PRODUCTION
123764317 36862.00 PRODUCTION

(FOC421)TRANS 2 REJECTED INVALID SALTEST
SALARY MUST BE LESS THAN $50,000

7. If all values are valid, the third REPEAT statement updates the employee’s salary
and department for each record in the buffer. The procedure then branches to Case
COLLECT to update six more records in the data source.

 Handling Errors

Designing Screens With FIDEL 1-53

Handling Errors
It is important to know how various errors are handled by FIDEL so that proper
instructions can be given to terminal operators. Following are several kinds of errors that
can cause a transaction or screen of data to be rejected:

• A format error caused by entering non-numeric data for a numeric field.

• A validation error caused by entering an incoming value that failed a VALIDATE
test coded in the MODIFY.

• A NOMATCH condition caused by entering data for a key field that did not match
any record in the data source.

• A DUPLICATE condition caused by key field values that matched records in the
data source.

• An ACCEPT error caused by entering a value for a data source field which failed the
ACCEPT test.

Handling Format Errors
If the operator enters a non-numeric character into a field defined as numeric, an error
message is displayed and the screen is not processed (processing stops). The error
message indicates the line number and field name in error and the cursor is automatically
positioned on that field. Additionally, if the operator enters a value that fails an ACCEPT
test for a field an error message is displayed and the screen is not processed. Any message
specified for that field with the HELPMESSAGE attribute will also be displayed.

The operator can retype the data and press the Enter key to retransmit the screen.
Alternatively, the operator may press the PF2 key to cancel the transaction. The error
prevents anything on the screen from being processed. When the operator corrects the
error and transmits the screen, processing resumes.

There are two exceptions to this rule. When there are repeating groups, all complete
transactions up to the error will be processed. Also, in REPEAT/HOLD loops, the data
prior to the format error may not be altered.

VALIDATE and CRTFORM Display Logic
When the operator enters a value that is invalid, the transaction is rejected and an error
message is displayed on the screen. By default, control returns to the first CRTFORM in
the TOP case. However, you can use an ON INVALID GOTO statement to transfer
control to any other case in the request.

If the NOCLEAR or blank option in the CRTFORM statement is in effect, the screen will
not be cleared. The operator can change the data in the offending transaction and
retransmit the screen.

Designing Screens With FIDEL

1-54 Information Builders

When you use validations, you can divide the tests into different cases and repeat a case if
it fails the test. The advantage of this is that the operator can change the invalid data and
retransmit the screen before other sections are processed. An ON INVALID TYPE phrase
can be used to send an informative message to the operator on the screen.

Using the ON VALID TYPE Phrase
The following example shows how you can use the ON VALID TYPE phrase to send an
informative message to the operator on the screen.

CASE TRY
CRTFORM

"EMPLOYEE ID #: <EMP_ID NAME: <LAST_NAME"
"CURRENT SALARY: <CURR_SAL"

VALIDATE
GOODSAL= CURR_SAL GT 10000 AND CURR_SAL LT 1000000;
ON INVALID TYPE
"THE CURRENT SALARY CANNOT BE LARGER THAN 1000000 OR"
"LESS THAN 10000"
ON INVALID GOTO TRY
.
.
.

All messages appear on the bottom four lines of the screen, unless you specify the TYPE
option on the CRTFORM statement. For more information on the TYPE option, see
Additional Screen Control Options on page 1-58.

Handling Errors With Repeating Groups
If old style repeating groups (those without subscripts) are present and there is an error,
processing continues to the next transaction on the screen. This means that if the operator
changes the offending transaction and retransmits the screen, the other transactions on the
screen become duplicates. It is important when using repeating groups to reject duplicates
and turn the duplicate message off (LOG DUPL MSG OFF).

Alternatively, avoid using VALIDATE with repeating groups. Use COMPUTE instead
and branch to a case that displays the erroneous data in a lower portion of the screen.

Example

 Handling Errors

Designing Screens With FIDEL 1-55

Using COMPUTE to Display Erroneous Data
In the following example, a test field is computed in Case TEST, using DECODE. This
test field checks that the department value is a valid one. If the operator inputs a
department value that is invalid, control branches to a case that displays the erroneous
data (CASE BADDPT).

MODIFY FILE EMPLOYEE
1. CRTFORM

"FILL IN THE FOLLOWING CHART WITH THE SALARIES"
"AND DEPARTMENT ASSIGNMENTS OF FOUR NEW EMPLOYEES"
" "
" EMPLOYEE ID DEPARTMENT SALARY"
" ----------- ---------- ------"
"PERSON 1 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 2 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 3 <EMP_ID <DEPARTMENT <CURR_SAL"
"PERSON 4 <EMP_ID <DEPARTMENT <CURR_SAL"
GOTTO TEST

2. CASE TEST
IF EMP_ID IS ' ' GOTO TOP;
COMPUTE

TEST/I1 = DECODE DEPARTMENT (MIS 1 PRODUCTION 1 ELSE 0);
IF TEST IS 0 GOTO BADDEPT ELSE GOTO ADD;
ENDCASE

4. CASE ADD
MATCH EMP_ID

ON NOMATCH INCLUDE
ON MATCH REJECT

ENDCASE

3. CASE BADDEPT
COMPUTE

XEMP/A9 = EMP_ID;
XDEPT/A10 = DEPARTMENT;

CRTFORM LINE 12
"INVALID ENTRY: DEPARTMENT MUST BE MIS OR PRODUCTION"
"CORRECT THE ENTRY BELOW"
" "
"EMPLOYEE ID: <D.XEMP DEPARTMENT: <T.XDEPT"

COMPUTE
DEPARTMENT=XDEPT;

GOTO TEST
ENDCASE

DATA VIA FIDEL
END

Example

Designing Screens With FIDEL

1-56 Information Builders

The request processes as follows:

1. This is the first and TOP case and contains a CRTFORM that displays four instances
of repeating groups. Assume the operator fills in values and transmits the screen.
Control transfers to Case TEST.

2. Case TEST contains a computed field that uses DECODE to make sure that the
values that have been input for DEPARTMENT are either MIS or PRODUCTION.
When a DEPARTMENT value does not match this list, TEST is returned a code of
0, in which case control transfers to Case BADDEPT.

3. Case BADDEPT first computes two fields, XEMP and XDEPT, to have the values of
EMP_ID and DEPARTMENT at the time the error occurred. Next, BADDEPT
displays a CRTFORM containing a message to the operator and the two computed
fields. The XDEPT field, which contains the invalid DEPARTMENT value, is a
turnaround field so that the operator can see the invalid value and change it. Next, the
COMPUTE is reversed and the new values are returned to their respective fields.
Control transfers back to Case TEST where the DEPARTMENT values will continue
to be tested until they are all valid. At that point, control transfers to Case ADD.

4. Case ADD contains the MATCH logic necessary to include new employees into the
EMPLOYEE data source. The transaction including all the repeating groups is
processed at one time.

 Handling Errors

Designing Screens With FIDEL 1-57

Rejecting NOMATCH or Duplicate Data
When the request directs that transactions be rejected, an error message is displayed on
the screen. It is a good idea, when the major keys do not repeat, to use a split CRTFORM
and give the keys in the first CRTFORM. Once the keys are accepted, the rest of the data
may be entered.

Using NOMATCH to Return Control to Operator
In the following example, if the EMP_ID does not match, control returns immediately to
the operator with a request to correct the value. If a match does occur, the operator must
then fill in the balance of the form and transmit it.

MODIFY FILE EMPLOYEE
CRTFORM

"ENTER EMPLOYEE ID#: <EMP_ID"
"THEN PRESS ENTER"

MATCH EMP_ID
ON NOMATCH TYPE

"ID NOT IN DATABASE PLEASE REENTER"
ON NOMATCH REJECT
ON MATCH CRTFORM LINE 4

"LAST NAME: <T.LAST_NAME"
"DEPARTMENT: <T.DEPARTMENT"
"SALARY: <T.CURR_SAL"

ON MATCH UPDATE LAST_NAME DEPARTMENT CURR_SAL
DATA VIA FIDEL
END

If repeating groups are present and no other cases are involved, all of the groups are
processed before control returns to the screen. Thus, splitting screens in this way is
particularly useful when the second CRTFORM contains repeating groups.

Example

Designing Screens With FIDEL

1-58 Information Builders

Logging Transactions
You can log the data entered on the screen to any log file. Only the data is logged, not the
CRTFORM, so a compact log file is created.

Logging Data to a Log File
LOG TRANS ON ALLDATA

This will log transactions to a file allocated to the ddname ALLDATA.

The record length of the file must allow space for each field on each CRTFORM in the
procedure, plus one character at the start of each CRTFORM. The record length should
not be longer than this.

This may be an inconvenient format since it is very long if several CRTFORMs exist.
Instead you can construct a custom log file of your own design using TYPE statements.

Constructing a Custom Log File
The following example logs data collected from its preceding CRTFORM to a file
allocated to ddname MYCRT, including a COMPUTE transaction number, TNUM.

CRTFORM
"EMPLOYEE ID #: <EMP_ID NAME <LAST_NAME"
"HIRE DATE: <HIRE_DATE"

COMPUTE
TNUM/I4=TNUM+1;
TYPE ON MYCRT

"<TNUM><EMP_ID><LAST_NAME><HIRE_DATE"

This option is recommended, rather than the standard LOG option, whenever a procedure
contains more than two CRTFORMs, or when text or computed fields need to be captured
on the log file.

Additional Screen Control Options
MODIFY CRTFORMs support several additional screen control options:

• Clearing the screen with CLEAR/NOCLEAR.

• Specifying the screen size with WIDTH/HEIGHT.

• Changing the size of the message area at the bottom of the screen using TYPE. This
increases the length of the screen that can be used for the actual form.

Examples

 Handling Errors

Designing Screens With FIDEL 1-59

Clearing the Screen: CLEAR/NOCLEAR
Data is transmitted from the CRTFORM to the data source when the operator presses the
Enter key. After each successful screen is processed, the data areas are automatically
cleared. You can override this default by using the NOCLEAR option. Then, after each
data transmission, the screen remains unchanged.

This is a useful feature when there is a substantial amount of data that carries over from
one screen to another.

How to Clear the Screen Using CLEAR/NOCLEAR
CRTFORM action

where:

action

Is one of the following:
blank is the default. Causes the screen to clear after the data is transmitted. If a
transaction is invalid and an error message appears at the bottom of the screen, the
screen will not be cleared.
NOCLEAR causes the data values on the screen to remain as is after data is transmitted.
CLEAR causes the data values on the screen to clear after every data transmission,
even if there is an error. Thus, if CLEAR is specifically used and there is an error,
data must be reentered.

Note: The options chosen may be different from one CRTFORM to the next.

Syntax

Designing Screens With FIDEL I-1

Index
C
conditional fields, 1-21

FIDEL, 1-21

CRTFORM
automatic, 1-30
Case Logic, 1-41
conditional fields, 1-21
cursor position, 1-17
display fields, 1-9
display logic, 1-53
FIXFORM command, 1-26
groups of fields, 1-43, 1-54
handling errors, 1-53
labeled fields, 1-15
LINE command, 1-34
log file, 1-58
lowercase option, 1-8
mixed screens, 1-26
non-conditional fields, 1-21
PF keys, 1-13
spot markers, 1-6
turnaround fields, 1-9
VALIDATE command, 1-53

cursor position
CRTFORM, 1-17

CURSORAT command
CRTFORM, 1-18

CURSORINDEX command
CRTFORM, 1-17

D
data entry fields

FIDEL, 1-9

defining fields in FIDEL, 1-15

display fields, 1-9

E
embedded data

FIDEL, 1-6

F
FIDEL, 1-1

automatic CRTFORMs, 1-30
COMPUTE command, 1-21
conditional fields, 1-21
cursor position, 1-17
field positioning, 1-6
FIXFORM command, 1-26
format errors, 1-9
labeling fields, 1-15
MODIFY, 1-21
non-conditional fields, 1-21
PF keys, 1-13
repeating groups, 1-45
screen elements, 1-4
screen operating conventions, 1-2
spot markers, 1-6
syntax, 1-4

field attributes
FIDEL, 1-5

FIXFORM command
FIDEL, 1-26

FOCUS Interactive Data Entry Language, 1-1
automatic CRTFORMs, 1-30
COMPUTE command, 1-21
conditional fields, 1-21
cursor position, 1-17
field positioning, 1-6
FIXFORM command, 1-26
format errors, 1-9
labeling fields, 1-15
MODIFY, 1-21
non-conditional fields, 1-21
PF keys, 1-13
repeating groups, 1-45

Index

I-2 Information Builders

screen elements, 1-4
screen operating conventions, 1-2
spot markers, 1-6
syntax, 1-4

L
labels

FIDEL, 1-5, 1-15

LINE command
CRTFORM, 1-34

log file
CRTFORM, 1-58

M
MODIFY, 1-1, 1-2

FIDEL, 1-21

N
non-conditional fields, 1-21

FIDEL, 1-21

P
PF keys (FIDEL), 1-13

branching, 1-14
default settings, 1-13
query command, 1-13
resetting, 1-13

R
repeating fields

FIDEL, 1-43

repeating groups
FIDEL, 1-45, 1-54

S
spot markers

FIDEL, 1-6

T
turnaround fields

FIDEL, 1-9

V
VALIDATE command

FIDEL, 1-21

Reader Comments
In an ongoing effort to produce effective documentation, the Documentation Services staff at Information
Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections. Identify
specific pages where applicable. Send comments to:

 Corporate Publications
 Attn: Manager of Documentation Services
 Information Builders
 Two Penn Plaza
 New York, NY 10121-2898

or FAX this page to (212) 967-0460, or call Elizabeth Soudant at (212) 736-4433, x3819.

Name: __

Company: ___

Address: __

Telephone: ___ Date:______________________________

Comments:

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
Designing Screens With FIDEL DN4500367.0700
Version 4 Release 3.1

Reader Comments

Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433
Designing Screens With FIDEL DN4500367.0700
Version 4 Release 3.1

	Table of Contents
	1. Designing Screens With FIDEL
	Getting Started Using FIDEL With Modify
	Describing the CRT Screen
	Specifying Elements of the CRTFORM
	Defining a Field
	Using Spot Markers for Text and Field Positioning
	Specifying Lowercase Entry: UPPER/LOWER
	Data Entry, Display, and Turnaround Fields
	Controlling the Use of PF Keys
	Resetting PF Key Controls
	Setting PF Key Fields for Branching Purposes
	Using Labeled Fields
	Specifying Cursor Position
	Determining Current Cursor Position for Branching Purposes

	Using FIDEL in MODIFY
	Conditional and Non˚Conditional Fields
	Using FIXFORM and FIDEL in a Single MODIFY
	Default CRTFORM Processing Within the Same MODIFY Request
	Generating Automatic CRTFORMs
	Using Multiple CRTFORMs: LINE
	CRTFORMs and Case Logic
	Specifying Groups of Fields
	Using REPEAT to Display Multiple Records
	Using Groups of Fields With Case Logic

	Handling Errors
	Handling Format Errors
	VALIDATE and CRTFORM Display Logic
	Handling Errors With Repeating Groups
	Rejecting NOMATCH or Duplicate Data
	Logging Transactions
	Additional Screen Control Options
	Clearing the Screen: CLEAR/NOCLEAR

	Index

	hide:
	hide2:

